首页 > 新能源汽车 > 知识 > 太阳能热利用技术有哪些,太阳热能的技术开发

太阳能热利用技术有哪些,太阳热能的技术开发

来源:整理 时间:2023-09-12 07:35:22 编辑:太阳能 手机版

本文目录一览

1,太阳热能的技术开发

由于集聚太阳热能制作热水的热水器出台,人们开始积极利用太阳热能。迄今为止的技术开发表明,自然循环形、进而高性能强制循环形的太阳能系统已被开发,用途也从供热扩展到暖气与冷气。太阳热能利用机器的能源变换效率较高,在新能源中其设备费用也比较低廉,在费用效果比方面也很好。另外,通过迄今为止的研究开发,机器的性能与耐久性等在世界上也达到了较高的水准。具体而言,构成太阳热能利用系统的主要机器,有高效集聚太阳热能的集热器,将集热长时间蓄积的蓄热槽,热损耗低、效率高的输热配管等热运输系统,高效率利用热能的热变换器及绝热材料等。另外,作为太阳热能利用系统的形态,有冷暖气、供热系统、产业用太阳能系统,太阳热能发电系统,热、电气复合太阳能系统,为了更积极地利用、扩展太阳热能,还开发出许多将太阳热能利用于各种领域的技术。

太阳热能的技术开发

2,急急急 SOS 你知道人类利用太阳能的方法和途径有哪些

光热转换 光热转换即靠各种集热器把太阳能收集起来,用收集到的热能为人类服务。 早期最广泛的太阳能应用是将水加热,现今全世界已有数百万个太阳能热水装置。太阳能热水系统主要包括收集器、储存装置及循环管路三部分。 利用太阳能作冬天采暖之用,在许多寒冷地区已使用多年。因寒带地区冬季气温甚低, 室内必须有暖气设备,若要节省化石能源的消耗,可设法利用太阳能。大多数太阳能暖房使用热水系统,也有使用热空气系统的例子。太阳能暖房系统由太阳能收集器、热存储装置、辅助能源系统及室内暖房风扇系统组成。太阳辐射热经过收集器内的工作流体储存,然后向房间供热。 目前,美国已兴建100多万个主动式太阳能采暖系统和超过25万个依靠冷热空气自然流动的被动式太阳能住宅。 光电转换 光电转换即将太阳能转换成电能。目前,太阳能用于发电的途径有二:一是热发电,就是先用聚热器把太阳能变成热能,再通过汽轮机将热能转变为电能;二是光发电,就是利用太阳能电池的光电效应,将太阳能直接转变为电能,太阳能电池的主要原理是:通过使用半导体材料,将较薄的N型半导体置于较厚的P型半导体上,当光子撞击该装置的表面时,P型和N型半导体的接合面有电子扩散产生电流,可利用上下两端的金属导体将电流引出利用。目前,太阳能电池的成本还较高,要达到足够的功率,需要相当大的面积放置电池。 1953年,美国贝尔实验室研制出世界上第一个硅太阳能电池,转换效率为0.5%,1994年太阳能电池的转换效率已提高到17%。 光化转换 光化转换即先将太阳能转换成化学能,再转换为电能等其他能量。我们知道,植物靠叶绿素把光能转化成化学能,实现自身的生长与繁衍,若能揭示光化转换的奥秘,便可实现人造叶绿素发电。目前,太阳能光化转换正在积极探索、研究中。
光电转换等
你好:目前人类将太阳能用于: 发电,做饭,热水器,发电的技术不是很成熟,做饭要的特定地区用,热水器只要有太阳的地方均可用~~如果对你有帮助,望采纳。

急急急 SOS 你知道人类利用太阳能的方法和途径有哪些

3,现在都有哪些太阳能的利用方法

1:光热利用  通过与物质的相互作用转换成热能加以利用。目前使用最多的太阳能收集装置,基本原理是将太阳辐射能收集起来。主要有平板型集热器、真空管集热器和聚焦集热器等3种。通常根据所能达到温度和用途的不同,而把太阳能光热利用分为低温利用(<200℃)中温利用(200800℃)和高温利用(>800℃)目前低温利用主要有太阳能热水器、太阳能干燥器、太阳能蒸馏器、太阳房、太阳能空调制冷系统等,中温利用主要有太阳灶、太阳能热发电聚光集热装置等,高温利用主要有高温太阳炉等。  2:太阳能发电  目前已实用的主要有以下两种:利用太阳能发电的方式有多种。  即利用太阳辐射所产生的热能发电。一般是用太阳能集热器将所吸收的热能转换为工质的蒸汽,①光—热—电转换。然后由蒸汽驱动气轮机带动发电机发电。前一过程为光—热转换,后一过程为热—电转换。  基本装置是太阳能电池。②光—电转换。其基本原理是利用光生伏打效应将太阳辐射能直接转换为电能。  3:光化利用  这是一种利用太阳辐射能直接分解水制氢的光—化学转换方式。  4:光生物利用  通过植物的光合作用来实现将太阳能转换成为生物质的过程。目前主要有速生植物(如薪炭林)油料作物和巨型海藻。
太阳能利用基本方式可以分为如下4大类:(1)光热利用 它的基本原理是将太阳辐射能收集起来,通过与物质的相互作用转换成热能加以利用。目前使用最多的太阳能收集装置,主要有平板型集热器、真空管集热器和聚焦集热器等3种。通常根据所能达到的温度和用途的不同,而把太阳能光热利用分为低温利用(<200℃)、中温利用(200~800℃)和高温利用(>800℃)。目前低温利用主要有太阳能热水器、太阳能干燥器、太阳能蒸馏器、太阳房、太阳能空调制冷系统等,中温利用主要有太阳灶、太阳能热发电聚光集热装置等,高温利用主要有高温太阳炉等。(2)太阳能发电 利用太阳能发电的方式有多种,目前已实用的主要有以下两种: ①光—热—电转换,即利用太阳辐射所产生的热能发电。一般是用太阳能集热器将所吸收的热能转换为工质的蒸汽,然后由蒸汽驱动气轮机带动发电机发电。前一过程为光—热转换,后一过程为热—电转换。 ②光—电转换。其基本原理是利用光生伏打效应将太阳辐射能直接转换为电能,它的基本装置是太阳能电池。(3)光化利用 这是一种利用太阳辐射能直接分解水制氢的光—化学转换方式。(4)光生物利用 通过植物的光合作用来实现将太阳能转换成为生物质的过程。目前主要有速生植物(如薪炭林)、油料作物和巨型海藻。

现在都有哪些太阳能的利用方法

4,太阳能光热技术及应用

1.这个行业情景非常好啊,比如太阳能热水,热能发电等
太阳能的获取目前有三种模式,第一是光伏转换,就是光电效应,通过光电池直接把部分的光能转换成电能,目前的技术,转化效率大约在百分之十左右。第二是光转换成热能,这是利用了太阳光中的长波部分(近红外线)的热效应,得到热能,第三是太阳能照明,通过光导纤维直接传导阳光,引入室内照明。太阳能发电系统由太阳能电池组、太阳能控制器、蓄电池(组)组成。如输出电源为交流220v或110v,还需要配置逆变器。各部分的作用为: (一)太阳能电池板:太阳能电池板是太阳能发电系统中的核心部分,也是太阳能发电系统中价值最高的部分。其作用是将太阳的辐射能力转换为电能,或送往蓄电池中存储起来,或推动负载工作。太阳能电池板的质量和成本将直接决定整个系统的质量和成本; (二)太阳能控制器:太阳能控制器的作用是控制整个系统的工作状态,并对蓄电池起到过充电保护、过放电保护的作用。在温差较大的地方,合格的控制器还应具备温度补偿的功能。其他附加功能如光控开关、时控开关都应当是控制器的可选项; (三)蓄电池:一般为铅酸电池,小微型系统中,也可用镍氢电池、镍镉电池或锂电池。其作用是在有光照时将太阳能电池板所发出的电能储存起来,到需要的时候再释放出来。 (四)逆变器:在很多场合,都需要提供220vac、110vac的交流电源。由于太阳能的直接输出一般都是12vdc、24vdc、48vdc。为能向220vac的电器提供电能,需要将太阳能发电系统所发出的直流电能转换成交流电能,因此需要使用dc-ac逆变器。在某些场合,需要使用多种电压的负载时,也要用到dc-dc逆变器,如将24vdc的电能转换成5vdc的电能(注意,不是简单的降压)。 太阳能发电系统的设计需要考虑如下因素:q1、 太阳能发电系统在哪里使用?该地日光辐射情况如何?q2、 系统的负载功率多大?q3、 系统的输出电压是多少,直流还是交流?q4、 系统每天需要工作多少小时?q5、 如遇到没有日光照射的阴雨天气,系统需连续供电多少天?q6、 负载的情况,纯电阻性、电容性还是电感性,启动电流多大?q7、 系统需求的数量。太阳热水器,就是通过光热转换,利用太阳能把水加热的一种装置。 普通的太阳热水器是由平板集热器、蓄水箱和连接管道组成,不同的连接方式构成了不同的热水装置类型。太阳热水器就其水的流动方式而言大体可分为三类:循环式、直流式、整体式。 1.循环式:按水循环的动力可分为自然循环式和强制循环式。 (1)自然循环式: 自然循环式热水装置,它的蓄水箱置于集热器的上方,水在集热器受太阳热能的辐射温度升高。由于集热器与蓄水箱中的水的温差,形成系统的热虹吸压头,使热水由上循环管进入水箱的上部,同时箱底的冷水由下循环管流入集热器形成循环。在运行过程中系统和水温逐渐升高,经过一段时间后,水箱上部的热水即可使用。在用水的同时由补给水箱向蓄水箱补充冷水。 这类装置优点是结构简单,运行可靠且不需要外来能源。缺点是:为了防止系统在夜间产生倒流现象及维持必要的温度,热虹吸压头蓄水箱必须置于集热器的上方,这对于大型的装置,由于水箱过大,在建筑布置及用负荷考虑都会带来一些问题。此外自然循环热水装置中的水箱大多置于室外,要求有良好的保温设施。 (2)强制循环式: 这种热水装置靠水泵使水压集热器与蓄水间循环。系统中备有控制装置,当集热器顶端的水温比蓄水箱底部的水温高出若干度时,控制装置启动水泵。反之,两者的温差低于限定值时水泵停止运行。 2.直流式(亦称一次式) 直流式太阳热水器又可分为热虹吸型和定温放水型两种。 (1)热虹吸型 热虹吸型是由集热器、补水箱、蓄水箱与连接管道组成开式热系统。补给水箱的水位由浮球阀控制,使水位与集热器出口热水管(上升管)的最高位置处于同一水平。无阳光照射时,根据连通器原理,集热器、上升管和下降管均充满水,但不流动。当集热器接受热量后,其内部水温上升,系统中形成热虹吸压头,从而使上升管中的热水流入蓄热水箱,而补水箱的冷水则经下降管进入集热器。日照愈强,所得热水温度愈高,数量也愈多,太阳升起一段时间以后在蓄热水箱中,即可收集到一定数量的热水供使用。 (2)定温放水型 为了得到符合使用要求的热水,在集热器出口安装温度敏感元件,通过控制器操纵装在集热器入口管路上的电动阀的开度,根据出口温度来调节流量,使出口水温始终保持一定。

5,太阳能在生活中的利用有哪些

太阳以电磁辐射形式向宇宙空间发射的能量1 阳光晒干物件、光热转换2 太阳能热水器、光热转换3 太阳能发电、光热转换4、太阳能大棚蔬菜、光热转换太阳能是氢原子核在超高温时聚变释放的巨大能量,太阳能是人类能源的宝库,如化石能源、地球上的风能、生物质能都来源于太阳5、直接利用太阳能:集热器(有平板型集热器、聚光式集热器)(光能----内能)太阳能电池:(光能----电能)一般应用在人造卫星、宇宙飞船、打火机、手表等方面
有太阳能热水器(出来热水洗澡 ,洗菜,洗衣,供暖等),太阳能电池发电(夏天接空调制冷),太阳能供暖,太阳能电池电车。太阳能通讯,等等生活中经常用的。。
太阳能充电器,太阳能手电筒,太阳能背包(属于充电器类型),太阳能遮阳伞,太阳能车棚,太阳能手套……
就目前来说,人类直接利用太阳能还处于初级阶段,主要有太阳能集热、太阳能热水系统、太阳能暖房、太阳能发电等方式。太阳能集热器 太阳能热水器装置通常包括太阳能集热器、储水箱、管道及抽水泵其他部件。另外在冬天需要热交换器和膨胀槽以及发电装置以备电厂不能供电之需 。太阳能集热器(solar collector)在太阳能热系统中,接受太阳辐射并向传热工质传递热量的装置。按传热工质可分为液体集热器和空气集热器。按采光方式可分为聚光型和聚光型集热器两种。另外还有一种真空集热器:一个好的太阳能集热器应该能用20~30年。自从大约1980年以来所制作的集热器更应维持40~50年且很少进行维修。 太阳能热水系统 早期最广泛的太阳能应用即用于将水加热,现今全世界已有数百万太阳能热水装置。太阳能热水系统主要元件包括收集器、储存装置及循环管路三部分。此外,可能还有辅助的能源装置(如电热器等)以供应无日照时使用,另外尚可能有强制循环用的水,以控制水位或控制电动部份或温度的装置以及接到负载的管路等。依循环方式太阳能热水系统可分两种:1、自然循环式: 此种型式的储存箱置于收集器上方。水在收集器中接受太阳辐射的加热,温度上升,造成收集器及储水箱中水温不同而产生密度差,因此引起浮力,此一热虹吸现像,促使水在除水箱及收集器中自然流动。由与密度差的关系,水流量于收集器的太阳能吸收量成正比。此种型式因不需循环水,维护甚为简单,故已被广泛采用。 2、强制循环式:热水系统用水使水在收集器与储水箱之间循环。当收集器顶端水温高于储水箱底部水温若干度时,控制装置将启动水使水流动。水入口处设有止回阀以防止夜间水由收集器逆流,引起热损失。由此种型式的热水系统的流量可得知(因来自水的流量可知),容易预测性能,亦可推算于若干时间内的加热水量。如在同样设计条件下,其较自然循环方式具有可以获得较高水温的长处,但因其必须利用水,故有水电力、维护(如漏水等)以及控制装置时动时停,容易损坏水等问题存在。因此,除大型热水系统或需要较高水温的情形,才选择强制循环式,一般大多用自然循环式热水器。 暖房利用太阳能作房间冬天暖房之用,在许多寒冷地区已使用多年。因寒带地区冬季气温甚低,室内必须有暖气设备,若欲节省大量化石能源的消耗,设法应用太阳辐射热。大多数太阳能暖房使用热水系统,亦有使用热空气系统。太阳能暖房系统是由太阳能收集器、热储存装置、辅助能源系统,及室内暖房风扇系统所组成,其过程乃太阳辐射热传导,经收集器内的工作流体将热能储存,在供热至房间。至辅助热源则可装置在储热装置内、直接装设在房间内或装设于储存装置及房间之间等不同设计。当然亦可不用储热双置而直接将热能用到暖房的直接式暖房设计,或者将太阳能直接用于热电或光电方式发电,在加热房间,或透过冷暖房的热装置方式供作暖房使用。最常用的暖房系统为太阳能热水装置,其将热水通至储热装置之中(固体、液体或相变化的储热系统),然后利用风扇将室内或室外空气驱动至此储热装置中吸热,在把此热空气传送至室内;或利用另一种液体流至储热装置中吸热,当热流体流至室内,在利用风扇吹送被加热空气至室内,而达到暖房效果。太阳能发电即直接将太阳能转变成电能,并将电能存储在电容器中,以备需要时使用。
太阳能在生活中的利用其实很广泛:主要就是替代部分常规能源:例如:1. 水为媒介制作热量:用途很广泛 低温:生活用水,太阳灶,海水淡化,地暖,主动式太阳房;中高温:发电等2.空气媒介:干燥,(被动式)太阳房3.代替常规能源产生电能:光伏发电很多了.......................

6,太阳能有哪些利用方式开发时要考虑哪些因素

太阳能发电。虽然目前很流行了。但是很没有达到普及。如果想普及,才有生物,化学和物理结合。将可发电硅元素大量植入高大的灌木。不过才用生物技术将灌木植物转基因,使得植物大量吸收硅元素,并在体内生理做用排列为发电太阳能板。在植物根部引电并储存在电池中。这种技术在密密的制作中,中国在90年代生物工程兴起是已经有过草案,但目前生物技术水平有限,一直没有成功。一旦成功,不仅国际是二十二世纪的新能源领头,也对环境保护起到不可估量的作用。地球将成为真正的绿色家园。
【太阳能热利用】 就目前来说,人类直接利用太阳能还处于初级阶段,主要有太阳能集热、太阳能热水系统、太阳能暖房、太阳能发电等方式。 太阳能集热器 太阳能热水器装置通常包括太阳能集热器、储水箱、管道及抽水泵其他部件。另外在冬天需要热交换器和膨胀槽以及发电装置以备电厂不能供电之需 。太阳能集热器(solar collector)在太阳能热系统中,接受太阳辐射并向传热工质传递热量的装置。按传热工质可分为液体集热器和空气集热器。按采光方式可分为聚光型集热器和吸热型集热器两种。另外还有一种真空集热器:一个好的太阳能集热器应该能用20~30年。自从大约1980年以来所制作的集热器更应维持40~50年且很少进行维修。 太阳能热水系统 早期最广泛的太阳能应用即用于将水加热,现今全世界已有数百万太阳能热水装置。太阳能热水系统主要元件包括收集器、储存装置及循环管路三部分。此外,可能还有辅助的能源装置(如电热器等)以供应无日照时使用,另外尚可能有强制循环用的水,以控制水位或控制电动部份或温度的装置以及接到负载的管路等。依循环方式太阳能热水系统可分两种: 1、自然循环式: 此种型式的储存箱置于收集器上方。水在收集器中接受太阳辐射的加热,温度上升,造成收集器及储水箱中水温不同而产生密度差,因此引起浮力,此一热虹吸现像,促使水在除水箱及收集器中自然流动。由与密度差的关系,水流量于收集器的太阳能吸收量成正比。此种型式因不需循环水,维护甚为简单,故已被广泛采用。 2、强制循环式: 热水系统用水使水在收集器与储水箱之间循环。当收集器顶端水温高于储水箱底部水温若干度时,控制装置将启动水使水流动。水入口处设有止回阀以防止夜间水由收集器逆流,引起热损失。由此种型式的热水系统的流量可得知(因来自水的流量可知),容易预测性能,亦可推算于若干时间内的加热水量。如在同样设计条件下,其较自然循环方式具有可以获得较高水温的长处,但因其必须利用水,故有水电力、维护(如漏水等)以及控制装置时动时停,容易损坏水等问题存在。因此,除大型热水系统或需要较高水温的情形,才选择强制循环式,一般大多用自然循环式热水器。 暖房 利用太阳能作房间冬天暖房之用,在许多寒冷地区已使用多年。因寒带地区冬季气温甚低,室内必须有暖气设备,若欲节省大量化石能源的消耗,设法应用太阳辐射热。大多数太阳能暖房使用热水系统,亦有使用热空气系统。太阳能暖房系统是由太阳能收集器、热储存装置、辅助能源系统,及室内暖房风扇系统所组成,其过程乃太阳辐射热传导,经收集器内的工作流体将热能储存,再供热至房间。至辅助热源则可装置在储热装置内、直接装设在房间内或装设于储存装置及房间之间等不同设计。当然亦可不用储热双置而直接将热能用到暖房的直接式暖房设计,或者将太阳能直接用于热电或光电方式发电,再加热房间,或透过冷暖房的热装置方式供作暖房使用。最常用的暖房系统为太阳能热水装置,其将热水通至储热装置之中(固体、液体或相变化的储热系统),然后利用风扇将室内或室外空气驱动至此储热装置中吸热,再把此热空气传送至室内;或利用另一种液体流至储热装置中吸热,当热流体流至室内,在利用风扇吹送被加热空气至室内,而达到暖房效果。 太阳能发电 即直接将太阳能转变成电能,并将电能存储在电容器中,以备需要时使用。 太阳能离网发电系统 太阳能离网发电系统包括1、太阳能控制器(光伏控制器和风光互补控制器)对所发的电能进行调节和控制,一方面把调整后的能量送往直流负载或交流负载,另一方面把多余的能量送往蓄电池组储存,当所发的电不能满足负载需要时,太阳能控制器又把蓄电池的电能送往负载。蓄电池充满电后,控制器要控制蓄电池不被过充。当蓄电池所储存的电能放完时,太阳能控制器要控制蓄电池不被过放电,保护蓄电池。控制器的性能不好时,对蓄电池的使用寿命影响很大,并最终影响系统的可靠性。2、太阳能蓄电池组的任务是贮能,以便在夜间或阴雨天保证负载用电。3、太阳能逆变器负责把直流电转换为交流电,供交流负荷使用。太阳能逆变器是光伏风力发电系统的核心部件。由于使用地区相对落后、偏僻,维护困难,为了提高光伏风力发电系统的整体性能,保证电站的长期稳定运行,对逆变器的可靠性提出了很高的要求。另外由于新能源发电成本较高,太阳能逆变器的高效运行也显得非常重要。 太阳能离网发电系统主要产品分类 a、光伏组件 b、风机 c、控制器 d、蓄电池组 e、逆变器 f、风力/光伏发电控制与逆变器一体化电源。 太阳能并网发电系统 可再生能源并网发电系统是将光伏阵列、风力机以及燃料电池等产生的可再生能源不经过蓄电池储能,通过并网逆变器直接反向馈入电网的发电系统。 因为直接将电能输入电网,免除配置蓄电池,省掉了蓄电池储能和释放的过程,可以充分利用可再生能源所发出的电力,减小能量损耗,降低系统成本。并网发电系统能够并行使用市电和可再生能源作为本地交流负载的电源,降低整个系统的负载缺电率。同时,可再生能源并网系统可以对公用电网起到调峰作用。并网发电系统是太阳能风力发电的发展方向,代表了21世纪最具吸引力的能源利用技术。 太阳能并网发电系统主要产品分类 a、光伏并网逆变器 b、小型风力机并网逆变器 c、大型风机变流器 (双馈变流器,全功率变流器)。

7,太阳能可以应用到生活中的哪些领域

1.热泵技术热泵技术是一种新型的节能型空调制冷供热技术,是利用少量高品位的电能作为驱动能源,从低温热源吸取低品位热能,并将其传输给高温热源,以达到泵热的目的,从而转能质系数低的能源为能质系数高的能源,节约高品位能源,是一种能够提高能量品位的技术。2.太阳能制冷技术在太阳能的利用中,太阳能制冷空调是一个极具发展前景的领域,也是当前制冷技术研究中的热点。太阳能制冷具有以下三个优点:1)节能;2)环保;3)热量的供给和冷量的需求在季节和数量上能够高度匹配,太阳辐射越强,气温越高,冷量需求也越大。太阳能制冷还可以设计成多能源系统,充分利用余热、废气、天然气等其他能源。关于太阳能制冷系统的研究较多,从原理上看主要包括以下两种:1)以热能为驱动能源,如吸收式、吸附式、喷射式制冷等;2)以电能为驱动能源,先把太阳能转化成电能,然后再利用电能来制冷,如光电式制冷、热电制冷等。3.建筑光电一体式系统(BIPV)在欧美等发达国家,一些公用事业公司通过大型中心光电场以增加他们的电能,而另一些电力公司则通过建立靠近用户的小型光电场达到这个目的。有的光电阵列集电板布置在毗邻建筑的地方,有的布置在屋顶上,或者干脆整个结合到建筑的围护结构中。在这种情况下,建筑光电一体式系统就应运而生,简称为BIPV。这种BIPV光电设备可以充当建筑的屋顶、外壁板、幕墙、玻璃窗或者雨篷等特殊元件。建筑光电一体式系统作为一项新领域有如下优点:1)能够减少电量输送过程的费用,而这部分费用有时高达总电价的50%;2)能够减少电量输送过程的能耗;3)避免了放置光电阵板的额外占用空间;4)可以省去建筑围护结构的部分费用;5)与建筑结构合二为一,可以省去单独为光电设备提供的支撑结构;6)使用新型建筑围护材料,发挥美学潜力;7)以不破坏环境的方式生产全部或部分的建筑所需电力。由于建筑光电一体式系统具有如上所述的一系列优点,并且随着光电技术研究的进步、光电设备价格的下降,在不久的将来,将有越来越多的建筑表面将采用光电覆面。
.热泵技术热泵技术是一种新型的节能型空调制冷供热技术,是利用少量高品位的电能作为驱动能源,从低温热源吸取低品位热能,并将其传输给高温热源,以达到泵热的目的,从而转能质系数低的能源为能质系数高的能源,节约高品位能源,是一种能够提高能量品位的技术。2.太阳能制冷技术在太阳能的利用中,太阳能制冷空调是一个极具发展前景的领域,也是当前制冷技术研究中的热点。太阳能制冷具有以下三个优点:1)节能;2)环保;3)热量的供给和冷量的需求在季节和数量上能够高度匹配,太阳辐射越强,气温越高,冷量需求也越大。太阳能制冷还可以设计成多能源系统,充分利用余热、废气、天然气等其他能源。关于太阳能制冷系统的研究较多,从原理上看主要包括以下两种:1)以热能为驱动能源,如吸收式、吸附式、喷射式制冷等;2)以电能为驱动能源,先把太阳能转化成电能,然后再利用电能来制冷,如光电式制冷、热电制冷等。3.建筑光电一体式系统(BIPV)在欧美等发达国家,一些公用事业公司通过大型中心光电场以增加他们的电能,而另一些电力公司则通过建立靠近用户的小型光电场达到这个目的。有的光电阵列集电板布置在毗邻建筑的地方,有的布置在屋顶上,或者干脆整个结合到建筑的围护结构中。在这种情况下,建筑光电一体式系统就应运而生,简称为BIPV。这种BIPV光电设备可以充当建筑的屋顶、外壁板、幕墙、玻璃窗或者雨篷等特殊元件。建筑光电一体式系统作为一项新领域有如下优点:1)能够减少电量输送过程的费用,而这部分费用有时高达总电价的50%;2)能够减少电量输送过程的能耗;3)避免了放置光电阵板的额外占用空间;4)可以省去建筑围护结构的部分费用;5)与建筑结构合二为一,可以省去单独为光电设备提供的支撑结构;6)使用新型建筑围护材料,发挥美学潜力;7)以不破坏环境的方式生产全部或部分的建筑所需电力。由于建筑光电一体式系统具有如上所述的一系列优点,并且随着光电技术研究的进步、光电设备价格的下降,在不久的将来,将有越来越多的建筑表面将采用光电覆面。编辑于 2020-04-03TA的回答是否帮助到你了?能够帮助到你是知道答主们最快乐的事啦!
1.热泵技术热泵技术是一种新型的节能型空调制冷供热技术,是利用少量高品位的电能作为驱动能源,从低温热源吸取低品位热能,并将其传输给高温热源,以达到泵热的目的,从而转能质系数低的能源为能质系数高的能源,节约高品位能源,是一种能够提高能量品位的技术。2.太阳能制冷技术在太阳能的利用中,太阳能制冷空调是一个极具发展前景的领域,也是当前制冷技术研究中的热点。太阳能制冷具有以下三个优点:1)节能;2)环保;3)热量的供给和冷量的需求在季节和数量上能够高度匹配,太阳辐射越强,气温越高,冷量需求也越大。太阳能制冷还可以设计成多能源系统,充分利用余热、废气、天然气等其他能源。关于太阳能制冷系统的研究较多,从原理上看主要包括以下两种:1)以热能为驱动能源,如吸收式、吸附式、喷射式制冷等;2)以电能为驱动能源,先把太阳能转化成电能,然后再利用电能来制冷,如光电式制冷、热电制冷等。3.建筑光电一体式系统(BIPV)在欧美等发达国家,一些公用事业公司通过大型中心光电场以增加他们的电能,而另一些电力公司则通过建立靠近用户的小型光电场达到这个目的。有的光电阵列集电板布置在毗邻建筑的地方,有的布置在屋顶上,或者干脆整个结合到建筑的围护结构中。在这种情况下,建筑光电一体式系统就应运而生,简称为BIPV。这种BIPV光电设备可以充当建筑的屋顶、外壁板、幕墙、玻璃窗或者雨篷等特殊元件。建筑光电一体式系统作为一项新领域有如下优点:1)能够减少电量输送过程的费用,而这部分费用有时高达总电价的50%;2)能够减少电量输送过程的能耗;3)避免了放置光电阵板的额外占用空间;4)可以省去建筑围护结构的部分费用;5)与建筑结构合二为一,可以省去单独为光电设备提供的支撑结构;6)使用新型建筑围护材料,发挥美学潜力;7)以不破坏环境的方式生产全部或部分的建筑所需电力。由于建筑光电一体式系统具有如上所述的一系列优点,并且随着光电技术研究的进步、光电设备价格的下降,在不久的将来,将有越来越多的建筑表面将采用光电覆面。
热泵技术热泵技术是一种新型的节能型空调制冷供热技术,是利用少量高品位的电能作为驱动能源,从低温热源吸取低品位热能,并将其传输给高温热源,以达到泵热的目的,从而转能质系数低的能源为能质系数高的能源,节约高品位能源,是一种能够提高能量品位的技术。
我国作为世界上最大的发展中国家,经济高速发展,能源消耗的增长速度居于世界首位,要适应这个发展,以目前形势来看,传统方式生产的能源供需会有巨大的缺口,要补上这个渠口,就必须要寻找新的能源。比如取之无尽,用之不竭的太阳能,作为一种可再生资源,它的应用领域还是有很多的,比如常见的太阳能热水器,太阳能路灯等,一个是属于光热利用,一个属于光电利用,下面就具体来看看太阳能两大主要应用领域吧。?一、光热利用它的基本原理是将太阳辐射能手机起来,通过与物质的相互作用转混成热能而加以利用,其基本配置常会有集热器,可以把分散的太阳辐射聚集到一点或者一条线,一般有槽式、跌势和它是三种。在这其中,槽式的技术最为成熟,应用也最为广泛,但是温度一般就只能等到300℃左右,蝶式的温度可以达到很高,但是技术方面还是比不上槽式的,而塔式的缺点大概就在于占地面积大,在很多方面的应用都会受到限制。?一般来说,太阳能的热能都是直接使用的,不过也可以通过蓄热器来储存,这样在一些太阳能工作不稳定,或者像夜晚这样不能工作的夜里也能来使用。
首先它是有光热利用,比如我们的太阳能热水器,太阳能干燥器,太阳能蒸馏器,太阳能采暖,太阳能温室 ,太阳能空调制冷系统等,中温利用主要有太阳灶,太阳能热发电聚光集热装置等,高温利用主要有高温太阳炉等,还有发电的作用,还
文章TAG:太阳能热利用技术有哪些太阳太阳能太阳能热利用

最近更新

相关文章

新能源汽车排行榜推荐