首页 > 新能源汽车 > 知识 > 太阳能浮充电压设置,太阳能给蓄电池充电相对应电压

太阳能浮充电压设置,太阳能给蓄电池充电相对应电压

来源:整理 时间:2023-06-23 20:53:19 编辑:太阳能 手机版

1,太阳能给蓄电池充电相对应电压

单体电池的电压是多少的?不同厂家的产品浮充电压值有所不同。我知道的24V的电池的浮充电压应该在26.8-27.3V之间,均充电压应该为28.2V。浮充电压随温度的变化而变化,比如说10℃时候,浮充电压应该为27.3V,25℃的时候为26.8V,以25℃为标准,按-36mV/℃进行修正。

太阳能给蓄电池充电相对应电压

2,手机太阳能充电电压 功率3W 电压 9V 我在装上个稳压器应该调

1、现在大多手机都是5V的,调节电压到5V就可以了。2、为防范偏门手机的充电电压不是5V(尽管我还没有见过不是5V的),先还是你自己核实一下你的手机是不是5V充电。
你好!调到和你原手机充电器输出电压一样即可,一般是5V,不必很准,误差0.2也行,但也有例外,如5.5或6v,也有4.2v的要求基本无误差。打字不易,采纳哦!

手机太阳能充电电压 功率3W 电压 9V 我在装上个稳压器应该调

3,太阳能的电压为什么比蓄电池高

太阳能电路板的输出电压是可以调的,而且电流也可以调。如果比电池电压低,怎么充电?所以,一般是按蓄电池的浮充电压设置电路板的输出电压的。
太阳能电池板的电压是蓄电池或灯的1.5倍!
根据光伏的转换效率吧,有高有低。太阳能硅片采用硅为原材料,蓄电池采用铅酸,材料不同。
如果电压一样,就充不了电!
蓄电池的单节额定电压是2V,蓄电池充电终止电压是1.2*2=2.4V.所以太阳能电压至少2.4V以上!希望能帮到你

太阳能的电压为什么比蓄电池高

4,光伏发电的电压要求系统

对于独立的光伏系统而言,光伏组件的电压主要是与蓄电池的电压对接,只有当太阳能电池组件的电压等于或略高于合适的浮充电压时,才能达到最佳的充电状态。对于铅酸蓄电池组需要1.25至1.4倍以上的电压。
对于独立的光伏系统而言,光伏组件的电压主要是与蓄电池的电压对接,只有当太阳能电池组件的电压等于或略高于合适的浮充电压时,才能达到最佳的充电状态。对于铅酸蓄电池组需要1.25至1.4倍以上的电压。
对于独立的光伏系统而言,光伏组件的电压主要是与蓄电池的电压对接,只有当太阳能电池组件的电压等于或略高于合适的浮充电压时,才能达到最佳的充电状态。对于铅酸蓄电池组需要1.25至1.4倍以上的电压。
光伏发电的电压要求系统 对于独立的光伏系统而言,光伏组件的电压主要是与蓄电池的电压对接,只有当太阳能电池组件的电压等于或略高于合适的浮充电压时,才能达到最佳的充电状态。对于铅酸蓄电池组需要1.25至1.4倍以上的电压。
对于独立的光伏系统而言,光伏组件的电压主要是与蓄电池的电压对接,只有当太阳能电池组件的电压等于或略高于合适的浮充电压时,才能达到最佳的充电状态。对于铅酸蓄电池组需要1.25至1.4倍以上的电压。

5,我想问下设计太阳能电池组件48v的给蓄电池48V充放电两者

需要用太阳能电池控制器,起两个功能,一方面调整太阳能电池输出电压,一方面作电池充电控制。两者是不能直接相连的。=================开来你对太阳能电池了解还比较少,建议你直接找家太阳能电池控制器的厂家直接联系了解细节,这里简单介绍一下?太阳能最佳工作电压17.5V,我是不是选择串联三个?回答:太阳能电池是个恒功率的器件,这个17.5V会随着阳光的强度和负载电流变化的,作为一个恒功率器件。其电压电流有个最佳的范围,好的控制器会跟踪这个范围,使太阳能电池输出效率最高。而输出具体的电压值是通过太阳能控制器内部DCDC电路控制的,和太阳能电池输出电压无关。再根据功率选择并联的个数?回答,这个和你负载有关,一般你可以查到你安装电池所在地的光照指数,和平均光照时间,然后再根据你最终负载的功率(不仅仅是电池的容量),计算出你需要的太阳能电池板功率。举例子,你的负载如果是100W的灯泡,完全由太阳能供电,每天要点亮4个小时。而你说在地平均每天光照时间为8小时,光照度假设为最优照度的80%。那么你的太阳能电池就要选择不少于(4小时×100W)/(8小时×80%)=62.5W。这个就是你需要的太阳能电池板,然后根据实际情况选择电池容量,即可。注意,以上计算是比较理想的状态,一般实际设计的时候考虑连续阴雨的情况,都有一定富裕量。蓄电池要多大的电流电压才能算充电呢?只要电压高于电池端电压,电池就进入了充电状态。而要想充满电池,一般而言电池电压在充电过程中是变化的.铅酸电池一般采取三段充电方式:,以12V为例(48伏可以类推,相当于4节12V串联)恒流,恒压和浮充.电池电压在10.5V以上时进行恒流充电,当恒流充电至电池电压升为14.4V时改成恒压充电,到充电电流小于一定值时,进入浮充阶段,浮充电压可设为13.5V.当然这些电压点需要根据环境温度改变而有效的改变.这些控制,都是通过太阳能电池控制器可以控制的,你不用操心,只需要根据负载选择合适规格的电池即可。如果你只是简易控制充电,48V铅酸电池恒压一般为59.2V,浮充电压一般为为55.2V.需快速充电时电压还要上升.电流一般设置为0.1C~0.2C为好,也就是对50Ah的电池,在恒流阶段,充电电流为5A到10A为好

6,蓄电池的太阳能充电匹配电压如何配置

根据太阳能电池板的电压来匹配。1、太阳能电池板的工作电压一般有两种,17.5V和35V两种电压。2、对于电池板的两种不同电压,对太阳能系统来说,分别用于12V系统和24V系统。17.5V用于12V系统,35V用于24V系统。3、所谓的12V系统24V系统,其实就是指的蓄电池的电压。也就是说 12V的蓄电池,可以用17.5V的电池板充电,24V的蓄电池,可以用35V的电池板充电。4、用电池板给蓄电池充电,必须加控制器。控制器的作用是保护电池的充电放电,延长蓄电池的使用寿命。
太阳能供电系统蓄电池选型是很复杂的,下面列一个太阳能路灯系统的蓄电池设计给你 希望能对你有所帮助下面举例说明太阳能路灯系统设计的要点: 例如:需要在某市安装一批太阳能路灯,光源功率为 30w,要求路灯每天工作 8 小时,保证连续 7 个阴雨天能正常工作。当地东经 114 度,北纬 23 度,年平均水平日太阳辐射为 3.82kw.h/m2,年平均月气温为 20.5 度,两个连续的阴雨天间间隔时长 25 天。 根据以上资料,计算出光伏组件倾斜角 26 度,标准峰值时数约 3.9 小时。 (1)负载日耗电量 q=w* h/u=30*8/12=20ah 式中 u 为系统蓄电池标称电压 (2)满足负载日用电的太阳能电池组件的充电电流 i1=q*1.05/h/0.85/0.9=7.04a 式中 1.05 为太阳能充电综合损失系数,蓄电池充电效率、控制器效率 (3)蓄电池容量的确定 满足连续 10 个阴雨天正常工作的电池容量 c c=q*(d+1)/0.75*1.1=20*8/0.75*1.1=235ah 取 240ah 式中 0.75 为蓄电池放电深度,1.1 为蓄电池安全系数 选取 2 节 12v120ah 的电池组成电池组 (4)连续阴雨天过后需要恢复蓄电池容量的太阳能电池组件充电电流i2 i2=c*0.75/h/d=240*0.75/3.9/25=1.85a 式中 0.75 为蓄电池放电深度 (5)太阳电池组件的功率为(i1+i2)*18=(1.85+7.04)*18=160wp 式中 18 为太阳电池组件工作电压 选取 2 块峰值功率为 80wp 的太阳能
蓄电池的容量BC计算公式为:  BC=A×QL×NL×TO/CCAh(1)   式中:A为安全系数,取1.1~1.4之间;   QL为负载日均匀耗电量,为工作电流乘以日工作小时数;   NL为最长连续阴雨天数;   TO为温度修正系数,一般在0℃以上取1,-10℃以上取1.1,-10℃以下取1.2;   CC为蓄电池放电深度,一般铅酸蓄电池取0.75,碱性镍镉蓄电池取0.85。
没这么复杂,不用计算,你买太阳能板时就那几种电压,比如说6V,12V,24V等,我一般只用12V板,开路电压最高可以达到21V,如果是大功率的板或是并联使用的话,最好加个太阳能控制器,不过太阳能板成本较高,很少有用很大功率的,所以大都不需控制器,蓄电池本身 就可以作为一个稳压设备。就算是30W。50W的板子,也和天气以及阳光有关,一天也就三四个小时的阳光可以使太阳能板达到较高功率,基本上对电池不会造成什么损害。

7,太阳能的配置

太阳能路灯设计中配置常规计算 (2008-09-19 11:25:39) 随着传统能源的日益紧缺,太阳能的应用将会越来越广泛,尤其太阳能发电领域在短短 的数年时间内已发展成为成熟的朝阳产业。 1: 目前制约太阳能发电应用的最重要环节之一是价格,以一盏双路的太阳能路灯为例,两路负载共为60瓦,(以长江中下游地区有效光照4.5h/天、每夜放电7小时、增加电池板20%预留额计算)其电池板就需要160W左右,按每瓦30元计算,电池板的费用就要4800元,再加上180AH左右的蓄电池组费用也在1800左右,整个路灯一次性投入成本大大高于市电路灯,造成了太阳能路灯应用领域的主要瓶颈。 2:蓄电池的使用寿命也应该考虑在整个路灯系统应用中,一般的蓄电池保修三年或五年,但一般的蓄电池在一年、甚至半年以后就会出现充电不满的情况,有些实际充电率有可能下降到50%左右,这必将影响连续阴雨天时期的夜间正常照明,所以选择一款较好的蓄电池尤为重要。 3:一些工程商常选用LED灯做为太阳能路灯的照明,但是LED灯的质量层差不齐,光衰严重的LED半年就有可能衰减50%光照度。所以一定要选择光衰较慢的LED灯,或者选用无极灯、低压钠灯等。 4:控制器的选择往往也是被工程商忽略的一个问题,控制器的质量层差不齐,12V/10A的控制器市场价格在100-200元不等,虽然是整个路灯系统中价值最小的部分,但它却是非常重要的一个环节。控制器的好坏直接影响到太阳能路灯系统的组件寿命以及整个系统的采购成本,一:应该选择功耗较低的控制器,控制器24小时不间断工作,如其自身功耗较大,则会消耗部分电能,最好选择功耗在1毫安(MA)以下的控制器。二:要选择充电效率高的控制器,具有MCT充电模式的控制器能自动追踪电池板的最大电流,尤其在冬季或光照不足的时期,MCT充电模式比其他高出20%左右的效率。三:应选择具有两路调节功率的控制器,具有功率调节的控制器已被广泛推广,在夜间行人稀少时段可以自动关闭一路或两路照明,节约用电,还可以针对LED灯进行功率调节。除选择以上节电功能外,还应该注重控制器对蓄电池等组件的保护功能,像具有涓流充电模式的控制器就可以很好的保护蓄电池,增加蓄电池的寿命,另外设置控制器欠压保护值时,尽量把欠压保护值调在 ≥ 11.1V ,防止蓄电池过放。 5: 距离市区较远的地方还应该注意防盗工作,很多工程商因为施工疏忽,没有进行有效的防盗,导致蓄电池、电池板等组件被盗,不仅影响了正常照明,也造成了不必要的财产损失。目前工程案例中被盗居多为蓄电池,蓄电池埋于地下用水泥浇筑是一种有效防盗措施,在灯杆 上加装蓄电池箱的最好将其进行焊接加固。 6: 控制器的防水,控制器一般装于灯罩、电池箱中,一般也不会进水,但在实际工程案例中 控制器端子的连接线往往因为雨水顺着连接线流入控制器造成短路。所以在施工时应该注意将 内部连接线弯成“U”字型并固型,外部连接线也可以固定为“U”型,这样雨水就无法淋入造成 控制器短路,另外还可在内外线接口处涂抹防水胶。 7: 在众多太阳能路灯实际应用中,很多地方的太阳能路灯不能满足正常照明需要,尤其在阴雨天更为突出,除使用了质量较差的相关组件外,另一个主要的原因就是一味降低组件成本,不按需求设计配置,减小电池板和蓄电池的使用标准,所以导致在阴雨天路灯无法提供照明。以下提供太阳能电池板和蓄电池配置计算公式: 一:首先计算出电流: 如:12V蓄电池系统; 30W的灯2只,共60瓦。 电流 = 60W÷12V = 5 A 二:计算出蓄电池容量需求: 如:路灯每夜累计照明时间需要为满负载 7小时(h); (如晚上8:00开启,夜11:30关闭1路,凌晨4:30开启2路,凌晨5:30关闭) 需要满足连续阴雨天5天的照明需求。(5天另加阴雨天前一夜的照明,计6天) 蓄电池 = 5A × 7h ×( 5+1)天 = 5A × 42h =210 AH 另外为了防止蓄电池过充和过放,蓄电池一般充电到90%左右;放电余留20%左右。 所以210AH也只是应用中真正标准的70%左右。 三:计算出电池板的需求峰值(WP): 路灯每夜累计照明时间需要为 7小时(h); ★:电池板平均每天接受有效光照时间为4.5小时(h); 最少放宽对电池板需求20%的预留额。 WP÷17.4V = (5A × 7h × 120%)÷ 4.5h WP÷17.4V = 9.33 WP = 162(W) ★ :4.5h每天光照时间为长江中下游附近地区日照系数。 另外在太阳能路灯组件中,线损、控制器的损耗、及镇流器或恒流源的功耗各有不同,实际应用中可能在5%-25%左右。所以162W也只是理论值,根据实际情况需要有所增加。
你说你问的也太笼统了你是要问 太阳能 路灯计算?还是太阳能 蓄电池 计算?还是别的什么的?反正我都给你 弄来了先是太阳能电池 1.太阳能电池组件串联数Ns 太阳能电池组件按一定数目串联起来,就可获得所需要的工作电压,但是,太阳能电池组件的串联数必须适当.串联数太少,串联电压低于蓄电池浮充电压,方阵就不能对蓄电池充电.如果串联数太多使输出电压远高于浮充电压时,充电电流也不会有明显的增加.因此,只有当太阳能电池组件的串联电压等于合适的浮充电压时,才能达到最佳的充电状态. 计算方法如下:Ns=UR/Uoc=(Uf+UD+Uc)/Uoc(2)式中:UR为太阳能电池方阵输出最小电压; Uoc为太阳能电池组件的最佳工作电压;Uf为蓄电池浮充电压;UD为二极管压降,一般取0.7V;UC为其它因数引起的压降. 电池的浮充电压和所选的蓄电池参数有关,应等于在最低温度下所选蓄电池单体的最大工作电压乘以串联的电池数. 2.太阳能电池组件并联数Np 在确定NP之前,我们先确定其相关量的计算方法. (1)将太阳能电池方阵安装地点的太阳能日辐射量Ht,转换成在标准光强下的平均日辐射时数H:H=Ht×2.778/10000h(3)式中:2.778/10000(h·m2/kJ)为将日辐射量换算为标准光强(1000W/m2)下的平均日辐射时数的系数. (2)太阳能电池组件日发电量Qp Qp=Ioc×H×Kop×CzAh?穴4?雪式中:Ioc为太阳能电池组件最佳工作电流;Kop为斜面修正系数;Cz为修正系数,主要为组合、衰减、灰尘、充电效率等的损失,一般取0.8. (3)两组最长连续阴雨天之间的最短间隔天数Nw,此数据为本设计之独特之处,主要考虑要在此段时间内将亏损的蓄电池电量补充起来,需补充的蓄电池容量Bcb为:Bcb=A×QL×NLAh?穴5?雪 (4)太阳能电池组件并联数Np的计算方法为:Np=(Bcb+Nw×QL)/(Qp×Nw)?穴6?雪式(6)的表达意为:并联的太阳能电池组组数,在两组连续阴雨天之间的最短间隔天数内所发电量,不仅供负载使用,还需补足蓄电池在最长连续阴雨天内所亏损电量. 3.太阳能电池方阵的功率计算 根据太阳能电池组件的串并联数,即可得出所需太阳能电池方阵的功率P:P=Po×Ns×NpW(7)式中:Po为太阳能电池组件的额定功率. 设计实例 以某地面卫星接收站为例,负载电压为12V,功率为25W,每天工作24h,最长连续阴雨天为15d,两最长连续阴雨天最短间隔天数为30d,太阳能电池采用云南半导体器件厂生产的38D975×400型组件,组件标准功率为38W,工作电压17.1V,工作电流2.22A,蓄电池采用铅酸免维护蓄电池,浮充电压为(14±1)V.其水平面太阳辐射数据参照表1,其水平面的年平均日辐射量为12110(kJ/m2),Kop值为0.885,最佳倾角为16.13°,计算太阳能电池方阵功率及蓄电池容量. 1.蓄电池容量Bc Bc=A×QL×NL×To/CC=1.2×(25/12)×24×15×1/0.75=1200Ah 2.太阳能电池方阵率P因为:Ns=UR/Uoc=(Uf+UD+UC)/Uoc=(14+0.7+)/17.1=0.92≈1Qp=Ioc×H×Kop×Cz=2.22×12110×(2.778/10000)×0.885×0.8≈5.29AhBcb=A×QL×NL=1.2×?穴25/12?雪×24×15=900AhQL=(25/12)×24=50Ah Np=(Bcb+Nw×QL)/(Qp×Nw)=(900+30×50)/(5.29×30)≈15 故太阳能电池方阵功率为:P=Po×Ns×Np=38×1×15=570W 3.计算结果该地面卫星接收站需太阳能电池方阵功率为570W,蓄电池容量为1200Ah---------------------------------------------------------------------接下来 是 太阳能路灯太阳能路灯设计中配置常规计算 随着传统能源的日益紧缺,太阳能的应用将会越来越广泛,尤其太阳能发电领域在短短 的数年时间内已发展成为成熟的朝阳产业。 1: 目前制约太阳能发电应用的最重要环节之一是价格,以一盏双路的太阳能路灯为例,两路负载共为60瓦,(以长江中下游地区有效光照4.5h/天、每夜放电7小时、增加电池板20%预留额计算)其电池板就需要160W左右,按每瓦30元计算,电池板的费用就要4800元,再加上180AH左右的蓄电池组费用也在1800左右,整个路灯一次性投入成本大大高于市电路灯,造成了太阳能路灯应用领域的主要瓶颈。 2:蓄电池的使用寿命也应该考虑在整个路灯系统应用中,一般的蓄电池保修三年或五年,但一般的蓄电池在一年、甚至半年以后就会出现充电不满的情况,有些实际充电率有可能下降到50%左右,这必将影响连续阴雨天时期的夜间正常照明,所以选择一款较好的蓄电池尤为重要。 3:一些工程商常选用LED灯做为太阳能路灯的照明,但是LED灯的质量层差不齐,光衰严重的LED半年就有可能衰减50%光照度。所以一定要选择光衰较慢的LED灯,或者选用无极灯、低压钠灯等。 4:控制器的选择往往也是被工程商忽略的一个问题,控制器的质量层差不齐,12V/10A的控制器市场价格在100-200元不等,虽然是整个路灯系统中价值最小的部分,但它却是非常重要的一个环节。控制器的好坏直接影响到太阳能路灯系统的组件寿命以及整个系统的采购成本,一:应该选择功耗较低的控制器,控制器24小时不间断工作,如其自身功耗较大,则会消耗部分电能,最好选择功耗在1毫安(MA)以下的控制器。二:要选择充电效率高的控制器,具有MCT充电模式的控制器能自动追踪电池板的最大电流,尤其在冬季或光照不足的时期,MCT充电模式比其他高出20%左右的效率。三:应选择具有两路调节功率的控制器,具有功率调节的控制器已被广泛推广,在夜间行人稀少时段可以自动关闭一路或两路照明,节约用电,还可以针对LED灯进行功率调节。除选择以上节电功能外,还应该注重控制器对蓄电池等组件的保护功能,像具有涓流充电模式的控制器就可以很好的保护蓄电池,增加蓄电池的寿命,另外设置控制器欠压保护值时,尽量把欠压保护值调在 ≥ 11.1V ,防止蓄电池过放。 5: 距离市区较远的地方还应该注意防盗工作,很多工程商因为施工疏忽,没有进行有效的防盗,导致蓄电池、电池板等组件被盗,不仅影响了正常照明,也造成了不必要的财产损失。目前工程案例中被盗居多为蓄电池,蓄电池埋于地下用水泥浇筑是一种有效防盗措施,在灯杆 上加装蓄电池箱的最好将其进行焊接加固。 6: 控制器的防水,控制器一般装于灯罩、电池箱中,一般也不会进水,但在实际工程案例中 控制器端子的连接线往往因为雨水顺着连接线流入控制器造成短路。所以在施工时应该注意将 内部连接线弯成“U”字型并固型,外部连接线也可以固定为“U”型,这样雨水就无法淋入造成 控制器短路,另外还可在内外线接口处涂抹防水胶。 7: 在众多太阳能路灯实际应用中,很多地方的太阳能路灯不能满足正常照明需要,尤其在阴雨天更为突出,除使用了质量较差的相关组件外,另一个主要的原因就是一味降低组件成本,不按需求设计配置,减小电池板和蓄电池的使用标准,所以导致在阴雨天路灯无法提供照明。下提供太阳能电池板和蓄电池配置计算公式: 一:首先计算出电流: 如:12V蓄电池系统; 30W的灯2只,共60瓦。 电流 = 60W÷12V = 5 A 二:计算出蓄电池容量需求: 如:路灯每夜累计照明时间需要为满负载 7小时(h); (如晚上8:00开启,夜11:30关闭1路,凌晨4:30开启2路,凌晨5:30关闭) 需要满足连续阴雨天5天的照明需求。(5天另加阴雨天前一夜的照明,计6天) 蓄电池 = 5A × 7h ×( 5+1)天 = 5A × 42h =210 AH 另外为了防止蓄电池过充和过放,蓄电池一般充电到90%左右;放电余留20%左右。 所以210AH也只是应用中真正标准的70%左右。 三:计算出电池板的需求峰值(WP): 路灯每夜累计照明时间需要为 7小时(h); ★:电池板平均每天接受有效光照时间为4.5小时(h); 最少放宽对电池板需求20%的预留额。 WP÷17.4V = (5A × 7h × 120%)÷ 4.5h WP÷17.4V = 9.33 WP = 162(W) ★ :4.5h每天光照时间为长江中下游附近地区日照系数。 另外在太阳能路灯组件中,线损、控制器的损耗、及镇流器或恒流源的功耗各有不同,实际应用中可能在5%-25%左右。所以162W也只是理论值,根据实际情况需要有所增加。 ---------------------------------------------------------------------接下来 是纯太阳能的计算公式 ①、Q=CMΔt Q:吸收的热量 C:比热容4.2×103J/(kg·℃) Δt:温升 M:吸收面积 ②、A=mCpΔΤ/Iy1(1-y2) A:集热面积 m:水(一天需要的热水) Cp:比热(1Kg水提高一度需要的热量)=4.187Kj/Kg℃ I:太阳平均照射强度Mj/m2 y1:集热器的效率(50%-55%) y2:系统的热损(10%-15%) 注:常州的平均热照射强度是18-19Mj/m2d(春秋) 举例:2个平米的集热器一天吸收的热量 A=mCpΔΤ/Iy1(1-y2) ΔΤ=18× 103Kj/m2×0.5×0.9/100 kg×4.187Kj/Kg℃ =19.34℃ Q=CMΔt×100 kg =4.2KJ/(kg·℃) ×2 m2×38.68℃×100 kg =3249.12 KJ------------------------希望是你想要的 对你有帮助---------------------
retret
1: 目前制约太阳能发电应用的最重要环节之一是价格,以一盏双路的太阳能路灯为例,两路负载共为60瓦,(以长江中下游地区有效光照4.5h/天、每夜放电7小时、增加电池板20%预留额计算)其电池板就需要160W左右,按每瓦30元计算,电池板的费用就要4800元,再加上180AH左右的蓄电池组费用也在1800左右,整个路灯一次性投入成本大大高于市电路灯,造成了太阳能路灯应用领域的主要瓶颈。 2:蓄电池的使用寿命也应该考虑在整个路灯系统应用中,一般的蓄电池保修三年或五年,但一般的蓄电池在一年、甚至半年以后就会出现充电不满的情况,有些实际充电率有可能下降到50%左右,这必将影响连续阴雨天时期的夜间正常照明,所以选择一款较好的蓄电池尤为重要。 3:一些工程商常选用LED灯做为太阳能路灯的照明,但是LED灯的质量层差不齐,光衰严重的LED半年就有可能衰减50%光照度。所以一定要选择光衰较慢的LED灯,或者选用无极灯、低压钠灯等。 4:控制器的选择往往也是被工程商忽略的一个问题,控制器的质量层差不齐,12V/10A的控制器市场价格在100-200元不等,虽然是整个路灯系统中价值最小的部分,但它却是非常重要的一个环节。控制器的好坏直接影响到太阳能路灯系统的组件寿命以及整个系统的采购成本,一:应该选择功耗较低的控制器,控制器24小时不间断工作,如其自身功耗较大,则会消耗部分电能,最好选择功耗在1毫安(MA)以下的控制器。二:要选择充电效率高的控制器,具有MCT充电模式的控制器能自动追踪电池板的最大电流,尤其在冬季或光照不足的时期,MCT充电模式比其他高出20%左右的效率。三:应选择具有两路调节功率的控制器,具有功率调节的控制器已被广泛推广,在夜间行人稀少时段可以自动关闭一路或两路照明,节约用电,还可以针对LED灯进行功率调节。除选择以上节电功能外,还应该注重控制器对蓄电池等组件的保护功能,像具有涓流充电模式的控制器就可以很好的保护蓄电池,增加蓄电池的寿命,另外设置控制器欠压保护值时,尽量把欠压保护值调在 ≥ 11.1V ,防止蓄电池过放。 5: 距离市区较远的地方还应该注意防盗工作,很多工程商因为施工疏忽,没有进行有效的防盗,导致蓄电池、电池板等组件被盗,不仅影响了正常照明,也造成了不必要的财产损失。目前工程案例中被盗居多为蓄电池,蓄电池埋于地下用水泥浇筑是一种有效防盗措施,在灯杆 上加装蓄电池箱的最好将其进行焊接加固。 6: 控制器的防水,控制器一般装于灯罩、电池箱中,一般也不会进水,但在实际工程案例中 控制器端子的连接线往往因为雨水顺着连接线流入控制器造成短路。所以在施工时应该注意将 内部连接线弯成“U”字型并固型,外部连接线也可以固定为“U”型,这样雨水就无法淋入造成 控制器短路,另外还可在内外线接口处涂抹防水胶。 7: 在众多太阳能路灯实际应用中,很多地方的太阳能路灯不能满足正常照明需要,尤其在阴雨天更为突出,除使用了质量较差的相关组件外,另一个主要的原因就是一味降低组件成本,不按需求设计配置,减小电池板和蓄电池的使用标准,所以导致在阴雨天路灯无法提供照明。以下提供太阳能电池板和蓄电池配置计算公式: 一:首先计算出电流: 如:12V蓄电池系统; 30W的灯2只,共60瓦。 电流 = 60W÷12V = 5 A 二:计算出蓄电池容量需求: 如:路灯每夜累计照明时间需要为满负载 7小时(h); (如晚上8:00开启,夜11:30关闭1路,凌晨4:30开启2路,凌晨5:30关闭) 需要满足连续阴雨天5天的照明需求。(5天另加阴雨天前一夜的照明,计6天) 蓄电池 = 5A × 7h ×( 5+1)天 = 5A × 42h =210 AH 另外为了防止蓄电池过充和过放,蓄电池一般充电到90%左右;放电余留20%左右。 所以210AH也只是应用中真正标准的70%左右。 三:计算出电池板的需求峰值(WP): 路灯每夜累计照明时间需要为 7小时(h); ★:电池板平均每天接受有效光照时间为4.5小时(h); 最少放宽对电池板需求20%的预留额。 WP÷17.4V = (5A × 7h × 120%)÷ 4.5h WP÷17.4V = 9.33 WP = 162(W) ★ :4.5h每天光照时间为长江中下游附近地区日照系数。 另外在太阳能路灯组件中,线损、控制器的损耗、及镇流器或恒流源的功耗各有不同,实际应用中可能在5%-25%左右。所以162W也只是理论值,根据实际情况需要有所增加。 先是太阳能电池 1.太阳能电池组件串联数Ns 太阳能电池组件按一定数目串联起来,就可获得所需要的工作电压,但是,太阳能电池组件的串联数必须适当.串联数太少,串联电压低于蓄电池浮充电压,方阵就不能对蓄电池充电.如果串联数太多使输出电压远高于浮充电压时,充电电流也不会有明显的增加.因此,只有当太阳能电池组件的串联电压等于合适的浮充电压时,才能达到最佳的充电状态. 计算方法如下:Ns=UR/Uoc=(Uf+UD+Uc)/Uoc(2)式中:UR为太阳能电池方阵输出最小电压; Uoc为太阳能电池组件的最佳工作电压;Uf为蓄电池浮充电压;UD为二极管压降,一般取0.7V;UC为其它因数引起的压降. 电池的浮充电压和所选的蓄电池参数有关,应等于在最低温度下所选蓄电池单体的最大工作电压乘以串联的电池数. 2.太阳能电池组件并联数Np 在确定NP之前,我们先确定其相关量的计算方法. (1)将太阳能电池方阵安装地点的太阳能日辐射量Ht,转换成在标准光强下的平均日辐射时数H:H=Ht×2.778/10000h(3)式中:2.778/10000(h·m2/kJ)为将日辐射量换算为标准光强(1000W/m2)下的平均日辐射时数的系数. (2)太阳能电池组件日发电量Qp Qp=Ioc×H×Kop×CzAh?穴4?雪式中:Ioc为太阳能电池组件最佳工作电流;Kop为斜面修正系数;Cz为修正系数,主要为组合、衰减、灰尘、充电效率等的损失,一般取0.8. (3)两组最长连续阴雨天之间的最短间隔天数Nw,此数据为本设计之独特之处,主要考虑要在此段时间内将亏损的蓄电池电量补充起来,需补充的蓄电池容量Bcb为:Bcb=A×QL×NLAh?穴5?雪 (4)太阳能电池组件并联数Np的计算方法为:Np=(Bcb+Nw×QL)/(Qp×Nw)?穴6?雪式(6)的表达意为:并联的太阳能电池组组数,在两组连续阴雨天之间的最短间隔天数内所发电量,不仅供负载使用,还需补足蓄电池在最长连续阴雨天内所亏损电量. 3.太阳能电池方阵的功率计算 根据太阳能电池组件的串并联数,即可得出所需太阳能电池方阵的功率P:P=Po×Ns×NpW(7)式中:Po为太阳能电池组件的额定功率. 设计实例 以某地面卫星接收站为例,负载电压为12V,功率为25W,每天工作24h,最长连续阴雨天为15d,两最长连续阴雨天最短间隔天数为30d,太阳能电池采用云南半导体器件厂生产的38D975×400型组件,组件标准功率为38W,工作电压17.1V,工作电流2.22A,蓄电池采用铅酸免维护蓄电池,浮充电压为(14±1)V.其水平面太阳辐射数据参照表1,其水平面的年平均日辐射量为12110(kJ/m2),Kop值为0.885,最佳倾角为16.13°,计算太阳能电池方阵功率及蓄电池容量. 1.蓄电池容量Bc Bc=A×QL×NL×To/CC=1.2×(25/12)×24×15×1/0.75=1200Ah 2.太阳能电池方阵率P因为:Ns=UR/Uoc=(Uf+UD+UC)/Uoc=(14+0.7+)/17.1=0.92≈1Qp=Ioc×H×Kop×Cz=2.22×12110×(2.778/10000)×0.885×0.8≈5.29AhBcb=A×QL×NL=1.2×?穴25/12?雪×24×15=900AhQL=(25/12)×24=50Ah Np=(Bcb+Nw×QL)/(Qp×Nw)=(900+30×50)/(5.29×30)≈15 故太阳能电池方阵功率为:P=Po×Ns×Np=38×1×15=570W 3.计算结果该地面卫星接收站需太阳能电池方阵功率为570W,蓄电池容量为1200Ah---------------------------------------------------------------------接下来 是 太阳能路灯太阳能路灯设计中配置常规计算 随着传统能源的日益紧缺,太阳能的应用将会越来越广泛,尤其太阳能发电领域在短短 的数年时间内已发展成为成熟的朝阳产业。 1: 目前制约太阳能发电应用的最重要环节之一是价格,以一盏双路的太阳能路灯为例,两路负载共为60瓦,(以长江中下游地区有效光照4.5h/天、每夜放电7小时、增加电池板20%预留额计算)其电池板就需要160W左右,按每瓦30元计算,电池板的费用就要4800元,再加上180AH左右的蓄电池组费用也在1800左右,整个路灯一次性投入成本大大高于市电路灯,造成了太阳能路灯应用领域的主要瓶颈。 2:蓄电池的使用寿命也应该考虑在整个路灯系统应用中,一般的蓄电池保修三年或五年,但一般的蓄电池在一年、甚至半年以后就会出现充电不满的情况,有些实际充电率有可能下降到50%左右,这必将影响连续阴雨天时期的夜间正常照明,所以选择一款较好的蓄电池尤为重要。 3:一些工程商常选用LED灯做为太阳能路灯的照明,但是LED灯的质量层差不齐,光衰严重的LED半年就有可能衰减50%光照度。所以一定要选择光衰较慢的LED灯,或者选用无极灯、低压钠灯等。 4:控制器的选择往往也是被工程商忽略的一个问题,控制器的质量层差不齐,12V/10A的控制器市场价格在100-200元不等,虽然是整个路灯系统中价值最小的部分,但它却是非常重要的一个环节。控制器的好坏直接影响到太阳能路灯系统的组件寿命以及整个系统的采购成本,一:应该选择功耗较低的控制器,控制器24小时不间断工作,如其自身功耗较大,则会消耗部分电能,最好选择功耗在1毫安(MA)以下的控制器。二:要选择充电效率高的控制器,具有MCT充电模式的控制器能自动追踪电池板的最大电流,尤其在冬季或光照不足的时期,MCT充电模式比其他高出20%左右的效率。三:应选择具有两路调节功率的控制器,具有功率调节的控制器已被广泛推广,在夜间行人稀少时段可以自动关闭一路或两路照明,节约用电,还可以针对LED灯进行功率调节。除选择以上节电功能外,还应该注重控制器对蓄电池等组件的保护功能,像具有涓流充电模式的控制器就可以很好的保护蓄电池,增加蓄电池的寿命,另外设置控制器欠压保护值时,尽量把欠压保护值调在 ≥ 11.1V ,防止蓄电池过放。 5: 距离市区较远的地方还应该注意防盗工作,很多工程商因为施工疏忽,没有进行有效的防盗,导致蓄电池、电池板等组件被盗,不仅影响了正常照明,也造成了不必要的财产损失。目前工程案例中被盗居多为蓄电池,蓄电池埋于地下用水泥浇筑是一种有效防盗措施,在灯杆 上加装蓄电池箱的最好将其进行焊接加固。 6: 控制器的防水,控制器一般装于灯罩、电池箱中,一般也不会进水,但在实际工程案例中 控制器端子的连接线往往因为雨水顺着连接线流入控制器造成短路。所以在施工时应该注意将 内部连接线弯成“U”字型并固型,外部连接线也可以固定为“U”型,这样雨水就无法淋入造成 控制器短路,另外还可在内外线接口处涂抹防水胶。 7: 在众多太阳能路灯实际应用中,很多地方的太阳能路灯不能满足正常照明需要,尤其在阴雨天更为突出,除使用了质量较差的相关组件外,另一个主要的原因就是一味降低组件成本,不按需求设计配置,减小电池板和蓄电池的使用标准,所以导致在阴雨天路灯无法提供照明。下提供太阳能电池板和蓄电池配置计算公式: 一:首先计算出电流: 如:12V蓄电池系统; 30W的灯2只,共60瓦。 电流 = 60W÷12V = 5 A 二:计算出蓄电池容量需求: 如:路灯每夜累计照明时间需要为满负载 7小时(h); (如晚上8:00开启,夜11:30关闭1路,凌晨4:30开启2路,凌晨5:30关闭) 需要满足连续阴雨天5天的照明需求。(5天另加阴雨天前一夜的照明,计6天) 蓄电池 = 5A × 7h ×( 5+1)天 = 5A × 42h =210 AH 另外为了防止蓄电池过充和过放,蓄电池一般充电到90%左右;放电余留20%左右。 所以210AH也只是应用中真正标准的70%左右。 三:计算出电池板的需求峰值(WP): 路灯每夜累计照明时间需要为 7小时(h); ★:电池板平均每天接受有效光照时间为4.5小时(h); 最少放宽对电池板需求20%的预留额。 WP÷17.4V = (5A × 7h × 120%)÷ 4.5h WP÷17.4V = 9.33 WP = 162(W) ★ :4.5h每天光照时间为长江中下游附近地区日照系数。 另外在太阳能路灯组件中,线损、控制器的损耗、及镇流器或恒流源的功耗各有不同,实际应用中可能在5%-25%左右。所以162W也只是理论值,根据实际情况需要有所增加。 ---------------------------------------------------------------------接下来 是纯太阳能的计算公式 ①、Q=CMΔt Q:吸收的热量 C:比热容4.2×103J/(kg·℃) Δt:温升 M:吸收面积 ②、A=mCpΔΤ/Iy1(1-y2) A:集热面积 m:水(一天需要的热水) Cp:比热(1Kg水提高一度需要的热量)=4.187Kj/Kg℃ I:太阳平均照射强度Mj/m2 y1:集热器的效率(50%-55%) y2:系统的热损(10%-15%) 注:常州的平均热照射强度是18-19Mj/m2d(春秋) 举例:2个平米的集热器一天吸收的热量 A=mCpΔΤ/Iy1(1-y2) ΔΤ=18× 103Kj/m2×0.5×0.9/100 kg×4.187Kj/Kg℃ =19.34℃ Q=CMΔt×100 kg =4.2KJ/(kg·℃) ×2 m2×38.68℃×100 kg =3249.12 KJ------------------------希望是你想要的 对你有帮助---------------------
太阳能路灯设计中配置常规计算随着传统能源的日益紧缺,太阳能的应用将会越来越广泛,尤其太阳能发电领域在短短 的数年时间内已发展成为成熟的朝阳产业。 1: 目前制约太阳能发电应用的最重要环节之一是价格,以一盏双路的太阳能路灯为例,两路负载共为60瓦,(以长江中下游地区有效光照4.5h/天、每夜放电7小时、增加电池板20%预留额计算)其电池板就需要160W左右,按每瓦30元计算,电池板的费用就要4800元,再加上180AH左右的蓄电池组费用也在1800左右,整个路灯一次性投入成本大大高于市电路灯,造成了太阳能路灯应用领域的主要瓶颈。 2:蓄电池的使用寿命也应该考虑在整个路灯系统应用中,一般的蓄电池保修三年或五年,但一般的蓄电池在一年、甚至半年以后就会出现充电不满的情况,有些实际充电率有可能下降到50%左右,这必将影响连续阴雨天时期的夜间正常照明,所以选择一款较好的蓄电池尤为重要。 3:一些工程商常选用LED灯做为太阳能路灯的照明,但是LED灯的质量层差不齐,光衰严重的LED半年就有可能衰减50%光照度。所以一定要选择光衰较慢的LED灯,或者选用无极灯、低压钠灯等。 4:控制器的选择往往也是被工程商忽略的一个问题,控制器的质量层差不齐,12V/10A的控制器市场价格在100-200元不等,虽然是整个路灯系统中价值最小的部分,但它却是非常重要的一个环节。控制器的好坏直接影响到太阳能路灯系统的组件寿命以及整个系统的采购成本,一:应该选择功耗较低的控制器,控制器24小时不间断工作,如其自身功耗较大,则会消耗部分电能,最好选择功耗在1毫安(MA)以下的控制器。二:要选择充电效率高的控制器,具有MCT充电模式的控制器能自动追踪电池板的最大电流,尤其在冬季或光照不足的时期,MCT充电模式比其他高出20%左右的效率。三:应选择具有两路调节功率的控制器,具有功率调节的控制器已被广泛推广,在夜间行人稀少时段可以自动关闭一路或两路照明,节约用电,还可以针对LED灯进行功率调节。除选择以上节电功能外,还应该注重控制器对蓄电池等组件的保护功能,像具有涓流充电模式的控制器就可以很好的保护蓄电池,增加蓄电池的寿命,另外设置控制器欠压保护值时,尽量把欠压保护值调在 ≥ 11.1V ,防止蓄电池过放。 5: 距离市区较远的地方还应该注意防盗工作,很多工程商因为施工疏忽,没有进行有效的防盗,导致蓄电池、电池板等组件被盗,不仅影响了正常照明,也造成了不必要的财产损失。目前工程案例中被盗居多为蓄电池,蓄电池埋于地下用水泥浇筑是一种有效防盗措施,在灯杆 上加装蓄电池箱的最好将其进行焊接加固。 6: 控制器的防水,控制器一般装于灯罩、电池箱中,一般也不会进水,但在实际工程案例中 控制器端子的连接线往往因为雨水顺着连接线流入控制器造成短路。所以在施工时应该注意将 内部连接线弯成“U”字型并固型,外部连接线也可以固定为“U”型,这样雨水就无法淋入造成 控制器短路,另外还可在内外线接口处涂抹防水胶。 7: 在众多太阳能路灯实际应用中,很多地方的太阳能路灯不能满足正常照明需要,尤其在阴雨天更为突出,除使用了质量较差的相关组件外,另一个主要的原因就是一味降低组件成本,不按需求设计配置,减小电池板和蓄电池的使用标准,所以导致在阴雨天路灯无法提供照明。以下提供太阳能电池板和蓄电池配置计算公式: 一:首先计算出电流: 如:12V蓄电池系统; 30W的灯2只,共60瓦。 电流 = 60W÷12V = 5 A 二:计算出蓄电池容量需求: 如:路灯每夜累计照明时间需要为满负载 7小时(h); (如晚上8:00开启,夜11:30关闭1路,凌晨4:30开启2路,凌晨5:30关闭) 需要满足连续阴雨天5天的照明需求。(5天另加阴雨天前一夜的照明,计6天) 蓄电池 = 5A × 7h ×( 5+1)天 = 5A × 42h =210 AH 另外为了防止蓄电池过充和过放,蓄电池一般充电到90%左右;放电余留20%左右。 所以210AH也只是应用中真正标准的70%左右。 三:计算出电池板的需求峰值(WP): 路灯每夜累计照明时间需要为 7小时(h); ★:电池板平均每天接受有效光照时间为4.5小时(h); 最少放宽对电池板需求20%的预留额。 WP÷17.4V = (5A × 7h × 120%)÷ 4.5h WP÷17.4V = 9.33 WP = 162(W) ★ :4.5h每天光照时间为长江中下游附近地区日照系数。 另外在太阳能路灯组件中,线损、控制器的损耗、及镇流器或恒流源的功耗各有不同,实际应用中可能在5%-25%左右。所以162W也只是理论值,根据实际情况需要有所增加。 先是太阳能电池 1.太阳能电池组件串联数Ns 太阳能电池组件按一定数目串联起来,就可获得所需要的工作电压,但是,太阳能电池组件的串联数必须适当.串联数太少,串联电压低于蓄电池浮充电压,方阵就不能对蓄电池充电.如果串联数太多使输出电压远高于浮充电压时,充电电流也不会有明显的增加.因此,只有当太阳能电池组件的串联电压等于合适的浮充电压时,才能达到最佳的充电状态. 计算方法如下:Ns=UR/Uoc=(Uf+UD+Uc)/Uoc(2)式中:UR为太阳能电池方阵输出最小电压; Uoc为太阳能电池组件的最佳工作电压;Uf为蓄电池浮充电压;UD为二极管压降,一般取0.7V;UC为其它因数引起的压降. 电池的浮充电压和所选的蓄电池参数有关,应等于在最低温度下所选蓄电池单体的最大工作电压乘以串联的电池数. 2.太阳能电池组件并联数Np 在确定NP之前,我们先确定其相关量的计算方法. (1)将太阳能电池方阵安装地点的太阳能日辐射量Ht,转换成在标准光强下的平均日辐射时数H:H=Ht×2.778/10000h(3)式中:2.778/10000(h·m2/kJ)为将日辐射量换算为标准光强(1000W/m2)下的平均日辐射时数的系数. (2)太阳能电池组件日发电量Qp Qp=Ioc×H×Kop×CzAh?穴4?雪式中:Ioc为太阳能电池组件最佳工作电流;Kop为斜面修正系数;Cz为修正系数,主要为组合、衰减、灰尘、充电效率等的损失,一般取0.8. (3)两组最长连续阴雨天之间的最短间隔天数Nw,此数据为本设计之独特之处,主要考虑要在此段时间内将亏损的蓄电池电量补充起来,需补充的蓄电池容量Bcb为:Bcb=A×QL×NLAh?穴5?雪 (4)太阳能电池组件并联数Np的计算方法为:Np=(Bcb+Nw×QL)/(Qp×Nw)?穴6?雪式(6)的表达意为:并联的太阳能电池组组数,在两组连续阴雨天之间的最短间隔天数内所发电量,不仅供负载使用,还需补足蓄电池在最长连续阴雨天内所亏损电量. 3.太阳能电池方阵的功率计算 根据太阳能电池组件的串并联数,即可得出所需太阳能电池方阵的功率P:P=Po×Ns×NpW(7)式中:Po为太阳能电池组件的额定功率. 设计实例 以某地面卫星接收站为例,负载电压为12V,功率为25W,每天工作24h,最长连续阴雨天为15d,两最长连续阴雨天最短间隔天数为30d,太阳能电池采用云南半导体器件厂生产的38D975×400型组件,组件标准功率为38W,工作电压17.1V,工作电流2.22A,蓄电池采用铅酸免维护蓄电池,浮充电压为(14±1)V.其水平面太阳辐射数据参照表1,其水平面的年平均日辐射量为12110(kJ/m2),Kop值为0.885,最佳倾角为16.13°,计算太阳能电池方阵功率及蓄电池容量. 1.蓄电池容量Bc Bc=A×QL×NL×To/CC=1.2×(25/12)×24×15×1/0.75=1200Ah 2.太阳能电池方阵率P因为:Ns=UR/Uoc=(Uf+UD+UC)/Uoc=(14+0.7+)/17.1=0.92≈1Qp=Ioc×H×Kop×Cz=2.22×12110×(2.778/10000)×0.885×0.8≈5.29AhBcb=A×QL×NL=1.2×?穴25/12?雪×24×15=900AhQL=(25/12)×24=50Ah Np=(Bcb+Nw×QL)/(Qp×Nw)=(900+30×50)/(5.29×30)≈15 故太阳能电池方阵功率为:P=Po×Ns×Np=38×1×15=570W 3.计算结果该地面卫星接收站需太阳能电池方阵功率为570W,蓄电池容量为1200Ah---------------------------------------------------------------------接下来 是 太阳能路灯太阳能路灯设计中配置常规计算 随着传统能源的日益紧缺,太阳能的应用将会越来越广泛,尤其太阳能发电领域在短短 的数年时间内已发展成为成熟的朝阳产业。 1: 目前制约太阳能发电应用的最重要环节之一是价格,以一盏双路的太阳能路灯为例,两路负载共为60瓦,(以长江中下游地区有效光照4.5h/天、每夜放电7小时、增加电池板20%预留额计算)其电池板就需要160W左右,按每瓦30元计算,电池板的费用就要4800元,再加上180AH左右的蓄电池组费用也在1800左右,整个路灯一次性投入成本大大高于市电路灯,造成了太阳能路灯应用领域的主要瓶颈。 2:蓄电池的使用寿命也应该考虑在整个路灯系统应用中,一般的蓄电池保修三年或五年,但一般的蓄电池在一年、甚至半年以后就会出现充电不满的情况,有些实际充电率有可能下降到50%左右,这必将影响连续阴雨天时期的夜间正常照明,所以选择一款较好的蓄电池尤为重要。 3:一些工程商常选用LED灯做为太阳能路灯的照明,但是LED灯的质量层差不齐,光衰严重的LED半年就有可能衰减50%光照度。所以一定要选择光衰较慢的LED灯,或者选用无极灯、低压钠灯等。 4:控制器的选择往往也是被工程商忽略的一个问题,控制器的质量层差不齐,12V/10A的控制器市场价格在100-200元不等,虽然是整个路灯系统中价值最小的部分,但它却是非常重要的一个环节。控制器的好坏直接影响到太阳能路灯系统的组件寿命以及整个系统的采购成本,一:应该选择功耗较低的控制器,控制器24小时不间断工作,如其自身功耗较大,则会消耗部分电能,最好选择功耗在1毫安(MA)以下的控制器。二:要选择充电效率高的控制器,具有MCT充电模式的控制器能自动追踪电池板的最大电流,尤其在冬季或光照不足的时期,MCT充电模式比其他高出20%左右的效率。三:应选择具有两路调节功率的控制器,具有功率调节的控制器已被广泛推广,在夜间行人稀少时段可以自动关闭一路或两路照明,节约用电,还可以针对LED灯进行功率调节。除选择以上节电功能外,还应该注重控制器对蓄电池等组件的保护功能,像具有涓流充电模式的控制器就可以很好的保护蓄电池,增加蓄电池的寿命,另外设置控制器欠压保护值时,尽量把欠压保护值调在 ≥ 11.1V ,防止蓄电池过放。 5: 距离市区较远的地方还应该注意防盗工作,很多工程商因为施工疏忽,没有进行有效的防盗,导致蓄电池、电池板等组件被盗,不仅影响了正常照明,也造成了不必要的财产损失。目前工程案例中被盗居多为蓄电池,蓄电池埋于地下用水泥浇筑是一种有效防盗措施,在灯杆 上加装蓄电池箱的最好将其进行焊接加固。 6: 控制器的防水,控制器一般装于灯罩、电池箱中,一般也不会进水,但在实际工程案例中 控制器端子的连接线往往因为雨水顺着连接线流入控制器造成短路。所以在施工时应该注意将 内部连接线弯成“U”字型并固型,外部连接线也可以固定为“U”型,这样雨水就无法淋入造成 控制器短路,另外还可在内外线接口处涂抹防水胶。 7: 在众多太阳能路灯实际应用中,很多地方的太阳能路灯不能满足正常照明需要,尤其在阴雨天更为突出,除使用了质量较差的相关组件外,另一个主要的原因就是一味降低组件成本,不按需求设计配置,减小电池板和蓄电池的使用标准,所以导致在阴雨天路灯无法提供照明。下提供太阳能电池板和蓄电池配置计算公式: 一:首先计算出电流: 如:12V蓄电池系统; 30W的灯2只,共60瓦。 电流 = 60W÷12V = 5 A 二:计算出蓄电池容量需求: 如:路灯每夜累计照明时间需要为满负载 7小时(h); (如晚上8:00开启,夜11:30关闭1路,凌晨4:30开启2路,凌晨5:30关闭) 需要满足连续阴雨天5天的照明需求。(5天另加阴雨天前一夜的照明,计6天) 蓄电池 = 5A × 7h ×( 5+1)天 = 5A × 42h =210 AH 另外为了防止蓄电池过充和过放,蓄电池一般充电到90%左右;放电余留20%左右。 所以210AH也只是应用中真正标准的70%左右。 三:计算出电池板的需求峰值(WP): 路灯每夜累计照明时间需要为 7小时(h); ★:电池板平均每天接受有效光照时间为4.5小时(h); 最少放宽对电池板需求20%的预留额。 WP÷17.4V = (5A × 7h × 120%)÷ 4.5h WP÷17.4V = 9.33 WP = 162(W) ★ :4.5h每天光照时间为长江中下游附近地区日照系数。 另外在太阳能路灯组件中,线损、控制器的损耗、及镇流器或恒流源的功耗各有不同,实际应用中可能在5%-25%左右。所以162W也只是理论值,根据实际情况需要有所增加。 ---------------------------------------------------------------------接下来 是纯太阳能的计算公式 ①、Q=CMΔt Q:吸收的热量 C:比热容4.2×103J/(kg·℃) Δt:温升 M:吸收面积 ②、A=mCpΔΤ/Iy1(1-y2) A:集热面积 m:水(一天需要的热水) Cp:比热(1Kg水提高一度需要的热量)=4.187Kj/Kg℃ I:太阳平均照射强度Mj/m2 y1:集热器的效率(50%-55%) y2:系统的热损(10%-15%) 注:常州的平均热照射强度是18-19Mj/m2d(春秋) 举例:2个平米的集热器一天吸收的热量 A=mCpΔΤ/Iy1(1-y2) ΔΤ=18× 103Kj/m2×0.5×0.9/100 kg×4.187Kj/Kg℃ =19.34℃ Q=CMΔt×100 kg =4.2KJ/(kg·℃) ×2 m2×38.68℃×100 kg =3249.12 KJ------------------------希望是你想要的 对你有帮助---------------------
文章TAG:太阳太阳能充电电压太阳能浮充电压设置

最近更新

相关文章

新能源汽车排行榜推荐